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1. Introduction

Recently , combined methods have been introduced for the determ ination
of the deflections of the vertical . Those methods may, first of all , incorporate
the follow ing data: satellite derived potential coeffic ients, mean gravity anomalies
and po int gravity observations. The idea is that the inner zone is determined in
detail from the point anomalies, for instance, by using the method of least-squares
collocation, while the effect of an intermediate zone is calculated with the Vening
Meinesz ’ formula using mean gravity anomalies , and finally, the remote zone
contribution is represented by a spherical harmonic expansion.

In this paper we are going to study the errors of the combined method.
The investigation is mainly restricted to the errors of the intermediate and remote
zones. The error contribution of the inner zone differs being much dependent on
the method of computation and dens ity and qual ity of the data . For this zone, we
will adopt some representative values found in the literature.

2. Computational Method

We briefly summarize the combined method presented in Lachapelle
(1977) . The components ~ and 71 are considered to consist of three subcomponents
(~~°, ~ i,  ~~; ~~~ ~~ 112) such that:

(1) = 
~ o + ~~ +

and
71 710 + 171 + 7 7 2

Each of the subcomponents is the contribution of the deflection s from a specific
zone around the po int of computation (see Figure 1). Exceptions are ~ o and i~o ,
which also serve as “reference field” in a~ and 0 2 .

e2 172

/
I
I ~~~~~~~~~~~~~~~ 

02 1

Figu re 1. Subdivision of the Surface Around the Point of Compu tation
into Inner Zone (0 i), Inte rmediate Zone (0~~) and Remote
Zone
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The values of ~ 0 and 170 are computed from the fully normalized potent ial coeff-
icients i~ and j~~ in the following way ( Lachapelle , ibid. , p. 3):

flhll ax

(2) 
{

~~~ O

} 
= - ~~ 

(rB
)

~~’ ~ [_ *  
{

D~o
} 

— 

~ + ~ 
~Dø

} ~~ (co , X) ~
110 ~~~ r DX DX

n=2

where n ~~ is the maximum degree of expansion , and:

R,,.(cO , A)  cosmX d —

D~ {
~~.(~,x) } = {si n mX }  ~j-~

- P~~(si n~~)

~R~~(cO,X ) r — s i n m ~~ — mD X ~~ _ 1= ~ ~~P~. (sin g~)
“ co~. m X  cos~~

re/r = ratio between the radius (rb ) of the inte rnal sphe re
(to which j~

’
~ and L. are referred) and the rad ius

(r )  of the po int of computation.

Remark 1. Formula (2) is a slight gene ralization ot Lachapelle ’s fo rmula for po ints
at an arb itra ry he ight above the sphere to which the coeffic ients i~ and i?,~ refe r.
For low degree expansions at the surface of the earth r~/r = 1 is a good approxi-
mation.

The values of ~~ and 1~~ are obtained by applying Vening Meinesz ’
integral formula to gravity anomalies that are formed by subtracting from mean
terrestrial free—air anomal ies (A~ ) the contribution (~ g5) implied by the potential
coeffic ients used in computing ~ ~ and l b .  This computation , which is carried
out for the zone 02 with ~~~ ~ ~~2 ,  can be expressed in the follow ing way :

1 dS~~ 
cos a

(3) = 
~~~ 5,f (~~~-~~g.) d 4 ~ {sin } dc,

where SQP ) is Stokes’ function , do is an elemental area , and o~ is the az imuth
from the point of computation to a current point.



The classical Vening Meinesz ’ formula is valid strictly only for a
sphere. However , terrestrial data ~~ may be used provided that either they
are continued analytically to the internal sphere or that a terra in correction
(Molodenskii term) is applied to ~g (Heiskanen and Moritz , 1967 , pp. 315 and
313, respectively) .

Lachapelle (ibid.) used 1°x 1
0 mean gravity anomalies for these

computat ions, which were extended to ~~ = 8°. tb 1 varied between O?7 and
1? 5, depending on the density of the po int gravity data in the inner zone .

The values of ~~ and 77~ may be obtained in different ways;
Lachapelle (ibid .) used least squares collocation. Such an app roach has the
advantage that there is no difficulty to compute the effect of the innermost zone
and we can easily incorporate heterogeneous data in the compu tations. As
pointed out by Tsche rning (1974) a considerable gain in accuracy will be achieved
if we include astrogeodetic deflection of the vertical in the set of observations .
On the other hand, we have to limit the number of observations to a few hundred
in order to keep the computer time at a reasonable level. Another difficulty is
the instability that occurs if two observations are located close to each other.
The original Vening Meinesz ’ fo rmula does not suffe r from these limitations.

3. Error Analysis

We now study the error propagation due to the data and othe r sou rces.
It is assumed that the nu me rical integration of Vening Meinesz ’ fo rmula is per-
formed with such an accuracy that the inte gration errors can be neglected.
Fu rthermore, the model errors cau sed by disre ga rding the flattening of the
earth (in the order of 3 x 10~~ ) are not conside red.

The gravity data are assumed to be corrected for the te r rain effect in
Vening Meinesz ’ fo rmula . If this correction is omitted , an additiona l error in the

- - order of 0 ’2 , is introduced (Moritz , 19fi6; l ) im i t r i j cv ich , 1972 ) .

The effect of the earth’ s atmosphere ca n be cst imated in the following
way (Morit z , 1974). A constant distribution ( I f  air  IS assumed above the refe rence
ellipsoid . This homogeneous mass has no ef f e c t  on the deflect ion . N ext , the
fic titiou s dens ity of the atmosphe re in ide the to[x)graph\ abovc the refe rence
ellipsoid) is subtracted fro m the density of the tor)ographv . t Th i s  modified density
of the topography can be used for a simultane ou s corre( t ion for terrain and
atmosphe re.) We obtain the follow ing contributi on from each compa rtment to the
correction for the atmosphere :

density f 1t !11OSI)hC1(atm. corr. = - terrain corr .  x (le nS itv of t~~l)O~ r~Ip h~
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As the terrain correction is in the order O~’2 it is obviou s that the atmosphe re has
no practical effec t on the deflections of the vertical.

Finally, we regard the earth constants as known (without errors).

3.1 Errors from the Remote Zone

The erro r cont ribution of the remote zone is dependent on the spherical
distance ~~2 (see Figu re 1). A formula for the RMS influence of his zone on the
total deflection of the vertical :

(4) 0 =  ~
J

~~~ 2~~~~~77
2

is given in Heiskanen and Moritz (1967 , p. 262) . However , as pointed out by
deWitte(1966) and Hagiwara (1972), Molodenskii’s truncation coefficients , Q ii , ifl
this formula need to be modified . A gene ralization is obtained by substituting c,

by (rs/ r)
2(

~~~
2) c~ (c f. Remark 1). With these mod ifications , the mean square

contribution of the remote zone becomes~

1 2(n÷1 )
(5) 60 2 

= ~~~~~fl (n + 1) ~~~~~ (~~ 2) (-
~

•)

where

c~ = anomaly degree variances at the internal (Bj erhammar)
sphere

Q n (~~ 2) = Qn (~~i2)  + S ( 4 2 )  P~ (CO s 
~~2)  sin II~2 / n(n + 1)

S (~J 2) = Stokes ’ function
= geocentric distance of truncation

As the spherical harmonic expan s ion for a given set of coeffic ients can be regarded
as a refe rence field in the inne r and intermediate zones , errors in the coefficient s
will influence the remote zone contribution s only. Thu s, the errors of the remote
zones are of two kinds: the potential coeffic ient errors and the truncation errors.
From (2) and (5) we obta in the follow ing mean square propa gation of the potential
coefficient erro rs:

-4-
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ma
2 1 2 ( n + 2)

(6) ~~~~ = .~~~.~~
‘ n (n + 1) Q

2
(~~~~) (.!.~~.) dc~

• where dc~ is the mean square e rror of C n .  This error can be determined in the
follow ing way.

Let us expand the gravity anomaly (~ g*) at the internal sphere (~ B =

• into a series of spherical harmonics to degree n m~ [cf. (2) 1:

max

(7)  ~ g* r~~~ ~~~

where

= G(n ~~ Rn m ( ~0 , X) + K na Sna (co ,X)]

Thus, the coefficient errors 6 1,,,, and óK ,~ are propagated accord ing to:

ô~~g~ = G (ix - 1) 

~ 

~~~~~ ~~~~~ X~ + ~~ ~p , X~

and the global mean square error of c , is finally given by:

(8) dc~ = M[6~ g’~
2 ) = G2 (n- 1) 2

~~~
’ (ô~~~~ + Oi~~)

where M [x ~ is the global average of x:

M [ x J = ~i. S Sx  d o

In (8) we have used the orthogonality property of the spherical harmonics ove r a
sphere. For a different estimate of óc ,,, see Rapp (1973) . In Table 1 we give
the mean square errors Oc~ computed from the errors of the GEM 7 coefficients
(Wagne r, 1976). 



Table 1. Mean Square Errors of the Degree Variances
for GEM 7 from Wagner (1976, Table 27).
Fully Normalized Harmonics. G = 980 gal.

n 6 cr~ io’~ * 6 c,~ [mgal2j t

2 35 0.0000
3 357 0.0014
4 219 0.0019
5 938 0.0144
6 715 0.0172
7 2103 0.0727
8 1710 0. 0805
9 3368 0. 2070

10 3191 0. 250 3
11 5990 0.5753
12 4924 0. 5722
13 7865 1. 0877
14 7247 1. 1762
15 11271 2 . 1216
16 11357 2 . 4541

* ( 6J~~ + OK~
2
~)

t Oc , = G2 ( n— 1) 2 6~~
2

Finally, by inserting these values for ôe~ into formula (6) , the potential coefficient
error for n ,,~, = 16 was determined. The ratio rB/r was set equal to 1 in this low
degree expansion. The result is depicted in Figure 2.

The other error source of the remote zone , the error due to the
• - . ‘i of the spherical harmonic expansion, is also given by formula (5) . The
mean square valu e of the truncation error is:

(9) ô9~~2 = n(n + 1) ~~ 
n +

it + 1

-6-



rr

For the numerical computation of this error , we use the degree variances c,,
• of Tscherning and Rapp (1974) :

(10) en = A (n— 1)/(n— 2) (n+ 24) , n � 3

5 = (r~/r)2 
= 0.999617

A = 425.28 mgal2

The convergence of (9) is very slow for ~~2 close to 0 while for larger angles ,
say ~~ 

� 5° , it converges well. Formula (9) is illustrated in Figure 2. The
excellent subroutine of Paul (1973) was used for a rapid determination of Q ~~,
and the series was truncated at n = 2000. A remarkable minimu m (0’.’06) of the
RMS error is obtained for ~I~2 = 40°.

3.2 Errors Due to Lack of More Detailed Data ~fl O-~

The application of Vening Meinesz ’ formula (3) for the determination
of ~~ and ~72 requires, theoretically, that Ag is known at each point in o~ . In
practice we limit ourselves to using mean gravity anomalies in this area. We
shall now estimate the error due to the lack of more detailed gravity material in
Cr 2 .  The data is assumed to be located on a mean earth sphere of radius r.

Let us expand Ag into Laplace harmonics:

• r. 0

The mean gravity field (~~ ) is related to ~g according to:

~~~(y) = $~~B (y .x)~~g do 
n-_ 2

where B (y.x) is the averaging opera tor and 8~, are its eige n values. If we
approximate each block of mean anomalies with a circular cap with equal area we
obta in (see Meissl , 1971 , p. 24) :

—7—
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(11) $n = [P~_ 1(cos~~c )— Pn+i (cos~~o)J/ (2 n +1 ) ( 1—c o s 4o )

where ~~ is the spherical radius of the cap. If z’ is the block size , then 4~o is
given by:

~ o =f ~~~in v/ n

Now the error at each point when representing Ag by ~~ iS:

n 2

Following the derivation of formula (5) in He iskanen and Moritz (1967 , pp. 261-
262), we obtain the following error propagation of ó g outside the spherical
distance t j .

The error of each component ~ and 17 becomes:

~~~~~~ ~~ n ( ~~ ) { j ~~~~~~~~~} 
O g

f l 2  cosQ ~X

and the total RMS error is given by:

M [ o~~~
2 

+ =

Q ~~~~~~~~~~~~~~~~~~~~~~~ 
1 ôögn ~~~~~~~~~~~ =

4G2 
-

~ 
-j 

n (  
‘iø cos~~ ~ X ~ X

n 2

= 

~~~~2 

n ( n + 1) M [ ô g~~}

L ~~~~~~~~~ - 

~~~~~~~~~~~~~~~

_ • _ .

~~~~~ 

• ..
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where

ó g~ = (1 $ n ) A g n

and

M [6 g } = (1- ~~~)2 M [~~g~ } = (1- ~~~ 2 
(

~~~~

)

2(n+~~)

Hence , by using Vening Meinesz ’ fo rmula outside the spherical distance ~~, the
following mean square error (due to neglecting more detailed data) is committed :

2 ( n + 2 )
66 2 1~~~ ’ Q~~(~ ) n ( n +1)( 1_ $~ ) 2 

(
~~

•) e n

Finally, the correspond ing contribution from the zone 02 is given by:

2( n+2)
(12) ~~~~ = —~-~ V E~~~(~ i ) — Q~ (~ 2)] n(n + 1)( 1— ~~~) (.~L)4 G - ~2 r

As 
~~ approaches 0 for large n this formula suffers from the same slow conver-

gence as (9) for small angles i~~ . For 1°�~~ � 4° (12) was expanded to n = 5000.
For larger ~~~, ii = 2000 was found to be a sufficient degree of truncation (11= 1°).
The results are shown in Figure 3.

3.3 Errors Due to Inaccurate Gravity Material in 02

A constant error in ~g will not affect the deflections of the vertical,
because there is no zero-order term present in ~ and r~. Hence, the only errorsource that has to be considered is the random errors due to insufficient gravity
data within each block to assure an accurate determination of the mean value.
The propagation of this error is given by (3). We obtain approximately :

(13) = 

(4~~~3)2 ~ m~ [ SS~~~~ 
d o ] 2
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where m is the standard error of Ag 1 and a is the area of block i. The
evaluation of (13) requ i res that rn is known for all blocks used in the deter-
mination of ~~ and ?7~ . It will therefo re be very much dependent on the qual ity
of the mean anomalies and will vary for each point of computation. In Table 2 ,
we report the compu tations in four spec ific points. The compu tations are based
on the l°x 1° anomaly information described in Bapp (1977). For unknown
blocks m , is set to 30 mgal. in this table we also show the erro r estimates of
Groten and Moritz (1964) . By assuming uniform errors of all ~g blocks , they
arrived at the following formula:

(14) 66~~2 = 
2 [J ( ~~1 ) —  J(~~ ) ]

8~ ( Gr)

where

J(~ ) = ~ (dS(~J ) )
2 

sin~~ d~~

S = 0.027 r2 (1°x 1° blocks , 1 gravity profile inside each block).
Formula (14) seems to give a rea sonable approximation of 69 2 , 2 for ~~
specially in areas with a poor gravity material (points 2 and 4).

In Table 2 we also report the sum of squares of the errors considered
above (the error of the inner zone is not included) . From these results we conclude
that the RMS errors are significantly decreasing with an inc reasing angle ~~~ all the
way to 30°.

3.4 An Extended View

On the basis of the previou s computation results , it is also of interest to

• study the errors when 42 is extended beyond 30°. However, such an extension
would include large areas where no l°x 1° gravity material exists today. In these
computations, we will therefo re assume that we have such a material with a uniform
error of all blocks. Thus, we can apply formula (14) for the computation of 66 2, 2 .
The resulting RMS errors are shown in Figure 4 .

• From Figures 2 and 4 we conclude that a dominating error sou rce is the
truncation of the sphe r ical harmonic expansion . A significant minimum of the RMS
error is obtained for Wa = 40°. It is unreasonable to extend ~~ beyond this minimum.
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3.5 The Inner Zone E rror and the Total Error

The error of the inner zone depends on the quality and distribution of
the observations in this area. To some extent it will also vary with the method
used in the computations. By using least squares collocation with approximately
200 observations, Lachapelle (ibid. ) estimated the errors of ~ ~ and 77~ to about
1~’3. These errors were rather independent of the cap size ~~~ which varied
between 0~7 and l~ 5 in the computations. Hence, by using this technique, the
total RMS error of 9 will be in the order of 2l’2 for iI~~= 1° and th2 = 40°.

Kearsley (1976) applied the original Vening Meinesz ’ formula w ith
the well—known subdivision into Rice R ings. The inner zone errors of ~ ~ and ~~were abou t 0~’3 for W 1 1° . Thu s, a total RMS error of 9 in the order of 1~’3
(for W2 = 40°) seems possible to achieve in an intensive dete rm ination of the
inner zone contribution. Even though the same accuracy might be possible to
obtain by using least squares col location, there are practical limits of the number
of observations in this method ( Lachapelle , ibid. , p. 6). Here we refe r to

= 617 = 0’3 as the accuracy of Vening Meinesz ’ formula. Some total RMS
errors based on the above estimates of 6e~ are given in Table 3.

Table 3. Total RMS Errors of the Deflections of the Vertical
for iP~ = 1°

~P 2 5° 10° 20° 30° 40°

Collocation 69 1= 1~’84 2’~88 2~’57 2~’34 2~’24 2~’22

Vening Meinesz ô9~ = 0 ’42 2~’26 1~’85 1 ’SO 1~’35 1~’32

Lachapelle (ibid. ) compared predicted deflections of the vertical at
some 169 astrogeodetic stations with the astrogeodetic deflection components.
The RMS difference between the total deflections was 2~’12 . This result agrees
fairly well w ith Table 3.

4. Summary and Conclusions

In this paper we have studied possible error sources for the
determination of the deflections of the vertical by using a comb ined method. The
investigation deals mainly with the errors generated in the intermediate and
remote zone , while for the inner zone, some error figures have been adopted
from earlier studies. The numerical results are shown in Tables 2 - 3 and
Figures 2 - 4.
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We assume that the only contribution to ~ and 17 from the remote zone
is a spherical harmonic expans ion to degree 16. The RMS truncation erro r of
such a series was found considerably sensitive to changes in the distance of
trunc:tion, W2 ( see Figure 2) . A local minimu m (69 0, 2 = 0~06) is obtained for

In the inte rmediate zone the gravity field was assumed to be repre—
sented by l° x 1° mean anomal ies. The error due to lack of a more detailed
gravity material is depicted iii Figure 3. This error source can be dim inished
by using a more detailed subdivision of the blocks between the distances l~ and
10° from the computation point.

The error propagation of the mean anomaly errors ( 66 2 , ?) is shown
in Table 2 for four selected points. A reasonable approximation of these errors
is obta ined by using formula (14) according to Moritz and Groten.

The RMS sum of the errors of the intermediate and remote zone is
given in Figure 4. A significant gaiu in accuracy is achieved by extend ing Wa to
at least 30°. A minimu m is obtained for i~ = 40°. Finally, by adding a repre-
sentative erro r for the inner zone computation, the total RMS error was estimated
(Table 3). If the inner zone is determined by the method of least squares colloca-
tion , the total RMS error will ha rdly be less than 2~’2 ~~ = 1°). Substitu t ing this
method with an accurate version of Vening Meinesz ’ formula , the final error
might dec rease to 1’3. Fu rther improve ments are expected for a refined sub-
divi sion of the intermediate zone blocks. In no case should the truncation distance
( W2 )  exceed 40°.
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